Gr. 2 – Understanding Structures & Mechanisms

Movement

Button Spinner

Specific Expectations:	
2.1 Follow established safety procedures during	science and technology investigations.
2.2 Investigate and describe different kinds of m	ovement.
2. F. Usa appropriate spigned and technology, year	shulary including ruch rull hasida abaya
2.5 Use appropriate science and technology voca	
wheel, axle, and inclined plane, in oral and writte	en communication.
3.1 Describe different ways in which objects mov	/e.
Big Idea (for lesson):	
Students will build and observe the motion of a l	outton spinner. Students will describe the types
of motion they see, and identify how it is affecte	d by external forces.
Accommodations:	Differentiated Instruction:
Increase time	Content: Use demo to show the content as
Visual Aids	you offer verbal descriptions.
Manipulatives	Process: Have students work in pairs and
Chunking	support each other if physical impediments
Step-by-Step	exist.
Scaffolding	Product: Students may show their final
Copy of Notes	product in pairs, and communicate their
Student Grouping	findings either verbally, visually, or through
	written means.
	Other:
Bloom's Taxonomy:	Multiple Intelligence:
Knowledge	∨erbal/Linguistic
Comprehension	
Application	
Analysis	Bodily/Kinesthetic
Synthesis	Naturalist
Evaluation	Musical/Rhythmic
	Interpersonal

Delivering The Lesson:

Portion & Timing	Grouping:		ng:	Introduction:	Materials
Minds On: 10 mins	W	S		Teacher starts off by asking students to take 10 minutes and draw a picture that shows all of the	White sheets of
				following sentences: 1. There is a house in the middle of the box.	paper with a large

Gr. 2 – Understanding Structures & Mechanisms

Movement

				2. There is a tree to the left of the house.	square in
				3. There are three flowers to the right of the	its centre.
				house.	
				4. There are two clouds above the house.	
				5. The front of the house has a door between two	
				windows.	
				6. There is a road in front of the house.	
				7. There is a car on the road.	
				The teacher can ask them how they knew where	
				to draw things, and what instructions were	
				confusing for them.	
				-Ask students why does position matter when we	
				are talking about movement? (Answer: it tells us	
				where we are starting, and gives us an idea of	
				how long it will take to get from point A to point	
				B, and how fast you should go.)	
Action:	W	S	I	Have students build their own button spinners	Button
15 mins	\boxtimes	\boxtimes	\boxtimes	according to the instructions on the handout.	Spinners
				Teacher can circulate and ask questions of the	Handout
				different groups:	(Materials
				-Watch the button; where does it get its energy	listed)
				from when you spin it? (Answer: the energy	
				comes from the potential energy you put in it	
				when winding it up.)	
				-Do you think the spinner would work well with	
				other shapes, like squares, triangles or stars? Why	
				or why not? Try cutting them out and replacing	
				the button with them.	
				-Why does the spinner start to go slower over	
				time? (Answer: if you listen, the spinner likely	
				makes some noise and the strings probably feel a	
				little warm. Some of the potential and kinetic	
				energy is being lost to heat and sound.)	
Consolidate:	W	S	I	Show the students a hand-crank flashlight, and	Hand-
10 mins	\boxtimes			ask them if anyone can explain how it generates	crank
				energy?	flashlight
				(Answer: A little electric generator is activated by	
				the cranking motion, and this electricity can	
				power the lightbulb. A small rechargeable battery	
				stores this energy temporarily so you don't have	
				to keep turning it.)	
				What type of energy do we put into it?/ What is	

Gr. 2 – Understanding Structures & Mechanisms

Movement

	the energy of motion called? (Answer: kinetic energy, which comes from us applying a force) What type of energy do we get out at the end? (Answer: electrical, then light!). Can the students think of anything else in their lives that stores energy? (Answer: Solar-powered vehicles/lights, batteries, etc.)	
--	--	--